Remote Sensing of Time-Varying Tidal Flat Topography, Jiangsu Coast, China, Based on the Waterline Method and an Artificial Neural Network Model

Author:

Kang Yanyan,Lv Wanting,He Jinyan,Ding Xianrong

Abstract

Measurement of beach heights in the intertidal zone has great importance for dynamic geomorphology research, coastal zone management, and the protection of ecological resources. Based on satellite images, the waterline method based on satellite images is one of the most effective methods for constructing digital elevation models (DEMs) for large-scale tidal flats. However, for fast-changing areas, such as Tiaozini in the Jiangsu coast, timely and detailed topographical data are difficult to obtain due to the insufficient images over a short period of time. In this study, as a supplement to the waterline method, an artificial neural network (ANN) model with the multi-layer feed-forward back propagation algorithm was developed to simulate the topography of variable Tiaozini tidal flats. The “7-15-15-1” double hidden layers with optimized training structures were confirmed via continuous training and comparisons. The input parameters included spectral bands (HJ-1 images B1~B4), geographical coordinates (X, Y), and the distance (D) to waterlines, and the output parameter was the elevation. The model training data were the HJ-1 image for 21 March 2014, and the corresponding topographic data obtained from the waterline method. Then, this ANN model was used to simulate synchronous DEMs corresponding to remote sensing images on 11 February 2012, and 11 July 2013, under low tide conditions. The height accuracy (root mean square error) of the two DEMs was about 0.3–0.4 m based on three transects of the in-situ measured data, and the horizontal accuracy was 30 m—the same as the spatial resolution of the HJ-1 image. Although its vertical accuracy is not very high, this ANN model can quickly provide the basic geomorphological framework for tidal flats based on only one image. This model, therefore, provides an effective way to monitor rapidly changing tidal flats.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3