Abstract
Combustion characteristics and harmful emissions with emphasized soot emission in the new concept of a biogas-dimethyl ether (DME) hybrid dual-fuel engine were analyzed. The effects of DME content, biogas compositions and diesel injection were examined. At any biogas composition, a rise in DME content in the fuel mixture leads to an increase in indicative engine cycle work (Wi) and NOx but a decrease in CO and soot volume fraction (fv). The effects of DME on Wi and soot volume fraction are more significant for poor biogas than for rich biogas, contrary to its effect tendency on CO and NOx concentrations. With a given operating condition and DME content, the biogas compositions slightly affect the performance and emission of a biogas-DME hybrid dual-fuel engine. At a fixed global equivalence ratio, the reduction of diesel injection leads to an increase in Wi and NOx concentration but a decrease in CO and soot volume fraction. The lower the diesel injection is, the more significant the effects of DME content on the combustion properties and pollutant emissions are. At a given operating condition and the same global equivalence ratio, the biogas-DME PCCI combustion mode is more advantageous than biogas-DME dual-fuel combustion mode. The substitution of diesel pilot ignition by DME pilot ignition in a biogas-DME hybrid dual engine is the optimal solution for both performance improvement and pollution emissions reduction.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献