Automatic Salient Object Extraction Based on Locally Adaptive Thresholding to Generate Tactile Graphics

Author:

Abdusalomov AkmalbekORCID,Mukhiddinov Mukhriddin,Djuraev Oybek,Khamdamov Utkir,Whangbo Taeg Keun

Abstract

Automatic extraction of salient regions is beneficial for various computer vision applications, such as image segmentation and object recognition. The salient visual information across images is very useful and plays a significant role for the visually impaired in identifying tactile information. In this paper, we introduce a novel saliency cuts method using local adaptive thresholding to obtain four regions from a given saliency map. First, we produced four regions for image segmentation using a saliency map as an input image and local adaptive thresholding. Second, the four regions were used to initialize an iterative version of the GrabCuts algorithm and to produce a robust and high-quality binary mask with a full resolution. Finally, salient objects’ outer boundaries and inner edges were detected using the solution from our previous research. Experimental results showed that local adaptive thresholding using integral images can produce a more robust binary mask compared to the results from previous works that make use of global thresholding techniques for salient object segmentation. The proposed method can extract salient objects with a low-quality saliency map, achieving a promising performance compared to existing methods. The proposed method has advantages in extracting salient objects and generating simple, important edges from natural scene images efficiently for delivering visually salient information to the visually impaired.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3