Effects of Manure Waste Biochars in Mining Soils

Author:

Álvarez María Luisa,Méndez Ana,Paz-Ferreiro JorgeORCID,Gascó Gabriel

Abstract

Land degradation by old mining activities is a concern worldwide. However, many known technologies are expensive and cannot be considered for mining soil restoration. Biochar amendment of mining soils is becoming an interesting alternative to traditional technologies due to an improvement in soil properties and metal mobility reduction. Biochar effects depend on soil and biochar properties, which in turn vary with pyrolysis conversion parameters and the feedstock used. The objective of this study is to evaluate the effect of four biochars prepared from poultry and rabbit manure at two pyrolysis temperatures (450 and 600 °C) in the trace metal mobility, CO2 emissions, and enzymatic activity of 10 mining soils located in three historical mining areas of Spain (Zarandas-Andalusia, Mijarojos-Cantabria, and Portman-Murcia). For this reason, soils were amended with biochars at a rate of 10% (w/w), and different treatments were incubated for 180 days. For acid soils of the Zarandas-Andalusia area, biochar addition reduced the mobility of Ni, Zn, Cd, Pb, and Cr, respectively, by 91%, 81%, 29%, 67%, and 70%. Nevertheless, biochars did not exhibit the same efficiency in the other two areas where alkaline soils were predominant. CO2 emissions generally increased in the treated soils. The application of biochars produced at 600 °C reduced CO2 emissions, in some cases by more than 28%, being an adequate strategy for C sequestration in soil. The results showed that application of manure biochars can be an effective technique to reduce the mobility of metals in multi-contaminated acid soils, while reducing metal toxicity for soil microorganisms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3