Induction Motor Multiclass Fault Diagnosis Based on Mean Impact Value and PSO-BPNN

Author:

Lee Chun-Yao,Ou Hong-Yi

Abstract

This paper presents a feature selection model based on mean impact value (MIV) to solve induction motor (IM) fault diagnosis on the current signal. In this paper, particle swarm optimization (PSO) is combined with back propagation neural network (BPNN) to classify the current signal of IM. First, the purpose of this study is to establish IM fault diagnosis system. Additionally, this study proposes a feature selection process that is composed of MIV, whose objective is to reduce the number of classifier input features. Secondly, the features are extracted as a feature database after analyzing the current signal of IM, and the fault diagnosis is established through the model of PSO-BPNN. Finally, redundant features are deleted through this feature selection process and a classifier is built. The result shows that the feature selection model based on MIV can filter the features effectively at a signal to noise ratio of 30 dB and 20 dB for the IM fault detection problem. In addition, the computing time of BPNN is also reduced which is helpful for online detection.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3