Estimating Hydraulic Parameters of Aquifers Using Type Curve Analysis of Pumping Tests with Piecewise-Constant Rates

Author:

Li Yabing1,Zhou Zhifang1,Zhuang Chao1,Dou Zhi1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

Abstract

Aquifer hydraulic parameters play a critical role in investigating various groundwater hydrology problems (e.g., groundwater depletion and groundwater transport), and the Theis formula for constant-rate pumping tests is commonly used to estimate them. However, the pumping rate in the field usually varies with time due to some factors, making the classical constant-rate model unsuitable for accurate parameter estimation. To address this issue, we developed a novel dimensionless-form analytical solution for variable-rate pumping tests involving piecewise-constant approximations for variable pumping rates. Analysis of the time–drawdown curves revealed that the first-step type curve was consistent with the Theis curve. However, the curves of subsequent steps deviated from the Theis curve and were associated with the first dimensionless inflection time (t1,D), which depended on the hydraulic conductivity (K) and specific storage (Ss) of the confined aquifers. On this basis, a new type curve method for estimating the aquifer K and Ss was proposed by matching the observed drawdown data with a series of type curves dependent on t1,D. Furthermore, this method can handle recovery drawdown data. We applied this method to a field site in Wuxi City, Jiangsu Province, China, by analyzing the drawdown data from four pumping tests. The hydraulic parameters estimated using this method were in close agreement with those calibrated via PEST. The calibrated K values were further validated by comparing them with lithology-based results. In summary, the geometric means of K and Ss were 6.62 m/d and 3.16 × 10−5 m−1 for the first confined aquifer and 0.92 m/d and 2.34 × 10−4 m−1 for the second confined aquifer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3