Moisture Susceptibility Evaluation of Asphalt Mixtures Containing Steel Slag Powder as Filler

Author:

Xiao Zhifeng,Chen Meizhu,Wu Shaopeng,Xie Jun,Kong Dezhi,Qiao Zhi,Niu Changchang

Abstract

The primary objective of this paper was to investigate the effect of replacing steel slag powder (SSP) with limestone filler (LF) with different contents as an inorganic anti-stripping agent on the moisture susceptibility of asphalt mixtures. Two traditional inorganic anti-stripping agents were selected for comparison, namely cement (CE) and slaked lime (SL). Apparent morphology, chemical compositions, and the particle size distribution of the four fillers were firstly studied. LF was replaced by SSP, CE, and SL with different contents, and then mixed with asphalt to prepare asphalt mortars. An 80 °C water immersion test was conducted to investigate the adhesion of asphalt mortar and aggregates, and an image analysis technique was utilized to evaluate the stripping of asphalt from the aggregates. A Marshall stability test and freeze-thaw split test were then conducted to analyze the effect of different fillers on the moisture susceptibility of asphalt mixtures. The results show that SSP contains a large amount of CaO, which indicates that SSP has a certain alkalinity. Compared with LF, SSP has a rougher surface texture and a finer particle size. Image analysis results show that the partially replacement of LF by SSP increases the asphalt coverage rate of aggregates, which means that SSP can improve the adhesion between asphalt mortar and aggregates. However, the excessive addition of SSP will result in a decrease in adhesion. The results of both the Marshall stability test and freeze-thaw split test demonstrate that CE, SL, and SSP can improve the moisture susceptibility of asphalt mixtures compared with the LF group, and that asphalt mixtures containing SSP have better moisture damage resistance than those with CE, but less such resistance than those with SL. With the increase of the amount of SSP replacing LF, the moisture susceptibility of the asphalt mixture decreases gradually. The optimum substitution amount of SSP was 25% of the total volume of fillers in this test.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3