The Complexities of Organ Crosstalk in Phosphate Homeostasis: Time to Put Phosphate Sensing Back in the Limelight

Author:

Figueres Lucile,Beck-Cormier Sarah,Beck LaurentORCID,Marks JoanneORCID

Abstract

Phosphate homeostasis is essential for health and is achieved via interaction between the bone, kidney, small intestine, and parathyroid glands and via intricate processes involving phosphate transporters, phosphate sensors, and circulating hormones. Numerous genetic and acquired disorders are associated with disruption in these processes and can lead to significant morbidity and mortality. The role of the kidney in phosphate homeostasis is well known, although it is recognized that the cellular mechanisms in murine models and humans are different. Intestinal phosphate transport also appears to differ in humans and rodents, with recent studies demonstrating a dominant role for the paracellular pathway. The existence of phosphate sensing has been acknowledged for decades; however, the underlying molecular mechanisms are poorly understood. At least three phosphate sensors have emerged. PiT2 and FGFR1c both act as phosphate sensors controlling Fibroblast Growth Factor 23 secretion in bone, whereas the calcium-sensing receptor controls parathyroid hormone secretion in response to extracellular phosphate. All three of the proposed sensors are expressed in the kidney and intestine but their exact function in these organs is unknown. Understanding organ interactions and the mechanisms involved in phosphate sensing requires significant research to develop novel approaches for the treatment of phosphate homeostasis disorders.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3