Fluctuation and Re-Establishment of Aerobic Granules Properties during the Long-Term Operation Period with Low-Strength and Low C/N Ratio Wastewater

Author:

Cha Lijuan,Liu Yong-Qiang,Duan Wenyan,Sternberg Christain E. W.ORCID,Yuan Qiangjun,Chen Fangyuan

Abstract

Long-term structure stability of aerobic granules is critical to maintaining stable wastewater treatment performance. In this study, granulation and long-term stability of sludge-treating synthetic wastewater with a low chemical oxygen demand to nitrogen (COD/N) ratio of 4:1 and COD concentration of 400 mg/L in anoxic-oxic conditions were investigated for over 300 days. Inoculated suspended sludge gradually transformed into granules-dominant sludge on day 80. Due to the improved sludge volume index after 30 min settling (SVI30), mixed liquor suspended solids (MLSS) reached 5.2 g/L on day 140. Without any external intervention or disturbance, aerobic granules started to disintegrate from day 140, causing the increase in SVI and the decrease in biomass concentration until day 210, with the average sludge size reduced to 243 µm. From day 210, granular sludge started to be re-established by re-granulation, and the average granule size increased to 500 µm on day 302. During these disintegration and re-granulation periods, there was no obvious difference in terms of COD removal and nitrification, but microbial species were found more diverse after the re-granulation, with Thauera and Sphingomonas dominant. Although there was no external intervention, the food to microorganisms ratio (F/M) varied significantly due to the changes in biomass concentration caused by strong selective pressure and the change of sludge-settling ability in the reactor. F/M ratios should be controlled between 0.3 and 1.0 gCOD/gSS·d to maintain the stable structure of granules to minimize the fluctuation of sludge properties under the conditions used in this study. Although aerobic granular sludge is able to re-establish itself after disintegration, controlling F/M ratios in a certain range would benefit long-term stability. The findings in this study are significant to deepen the understanding of granule stability with low-strength and low COD ratio wastewater and, thus, provide guidance for maintaining the long-term stability of granules.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3