Reproducibility of Aerobic Granules in Treating Low-Strength and Low-C/N-Ratio Wastewater and Associated Microbial Community Structure

Author:

Zhang Hongxing,Liu Yong-Qiang,Mao Shichao,Steinberg Christain E. W.ORCID,Duan Wenyan,Chen Fangyuan

Abstract

Long-term stability of the aerobic granular sludge system is essentially based on the microbial community structure of the biomass. In this study, the physicochemical and microbial characteristics of sludge and wastewater treatment performance were investigated regarding formation, maturation, and long-term maintenance of granules in two parallel sequencing batch reactors (SBR), R1 and R2, under identical conditions. The aim was to explore the linkage between microbial community structure of the aerobic granules, their long-term stability, as well as the reproducibility of granulation and long-term stability. The two reactors were operated with a COD concentration of 400 mg/L and a chemical oxygen demand to nitrogen (COD/N) ratio of 4:1 under anoxic–oxic conditions. It was found that although SVI30, sludge size, and distributions in R1 and R2 were different, aerobic granules were formed, and they maintained long-term stability in both reactors for 320 days, implying that a certain level of randomness of granulation does not affect the long-term stability and performance for COD and N removal. In addition, a significant reduction in the richness and diversity of microbial production was observed after the sludge was converted from inoculum or flocs to granules, but this did not negatively affect the performance of wastewater treatment. Among the predominant microbial species in aerobic granules, Zoogloea was identified as the most important bacteria present during the whole operation with the highest abundance, while Thauera was the important genus in the formation and maturation of the aerobic granules, but it cannot be maintained long-term due to the low food-to-microorganisms ratio (F/M) in the system. In addition, some species from Ohtaekwangia, Chryseobacterium, Taibaiella, and Tahibacter were found to proliferate strongly during long-term maintenance of aerobic granules. They may play an important role in the long-term stability of aerobic granules. These results demonstrate the reproducibility of granulation, the small influence of granulation on long-term stability, and the robustness of aerobic granulation for the removal of COD and N. Overall, our study contributes significantly to the understanding of microbial community structure for the long-term stability of aerobic granular sludge in the treatment of low-COD and low-COD/N-ratio wastewater in practice.

Funder

National Nature Science Fundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3