Feature Sensing and Robotic Grasping of Objects with Uncertain Information: A Review

Author:

Wang ChaoORCID,Zhang Xuehe,Zang Xizhe,Liu Yubin,Ding Guanwen,Yin Wenxin,Zhao Jie

Abstract

As there come to be more applications of intelligent robots, their task object is becoming more varied. However, it is still a challenge for a robot to handle unfamiliar objects. We review the recent work on the feature sensing and robotic grasping of objects with uncertain information. In particular, we focus on how the robot perceives the features of an object, so as to reduce the uncertainty of objects, and how the robot completes object grasping through the learning-based approach when the traditional approach fails. The uncertain information is classified into geometric information and physical information. Based on the type of uncertain information, the object is further classified into three categories, which are geometric-uncertain objects, physical-uncertain objects, and unknown objects. Furthermore, the approaches to the feature sensing and robotic grasping of these objects are presented based on the varied characteristics of each type of object. Finally, we summarize the reviewed approaches for uncertain objects and provide some interesting issues to be more investigated in the future. It is found that the object’s features, such as material and compactness, are difficult to be sensed, and the object grasping approach based on learning networks plays a more important role when the unknown degree of the task object increases.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of robot intelligent grasping based on tactile perception;Robotics and Computer-Integrated Manufacturing;2024-12

2. Using HSV-based approach for detecting and grasping an object by the industrial mechatronic system;Results in Engineering;2024-09

3. Grasp Approach Under Positional Uncertainty Using Compliant Tactile Sensing Modules and Reinforcement Learning;2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2024-08-06

4. Review of machine learning in robotic grasping control in space application;Acta Astronautica;2024-07

5. Neural Network Regression Analysis of Magnetic Sensor Data for Spatial Magnet Positioning;2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN);2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3