Laboratory Study of Deformational Characteristics and Acoustic Emission Properties of Coal with Different Strengths under Uniaxial Compression

Author:

Ma Shuangwen,Liang Han,Cao ChenORCID

Abstract

Acoustic emission (AE) can reflect the dynamic changes in a material’s structure, and it has been widely used in studies regarding coal mechanics, such as those focusing on the influence of loading rate or water content change on the mechanical properties of coal. However, the deformational behavior of coals with various strengths differs due to the variation in microstructure. Hard coal presents brittleness, which is closely related to certain kinds of geological disasters such as coal bursts; soft coal exhibits soft rock properties and large deformation mechanical characteristics. Therefore, conclusions drawn from AE characteristics of a single coal sample have application limitations. This paper studies the deformation patterns and AE characteristics of coals with different strengths. A uniaxial compression experiment was carried out using coal samples with average uniaxial compressive strengths of 30 MPa and 10 MPa; the SAEU2S digital AE system was used to measure the AE counts, dissipation energy, and fracturing point distributions at each deformation stage of the different coals. The results show that the bearing capacity of hard coal is similar to that of the elastic stage and plastic deformation stage, but it may lose its bearing capacity immediately after failure. Soft coal has a relatively distinct stress-softening deformation stage and retains a certain bearing capacity after the peak. The AE counts and dissipation energy of hard coal are significantly higher than those of soft media, with average increases of 49% and 26%, respectively. Via comparative analysis of the distribution and development of internal rupture points within soft coal and hard coal at 15%, 70%, and 80% peak loads, it was observed that hard coal has fewer rupture points in the elastic deformation stage, allowing it to maintain good integrity; however, its rupture points increase rapidly under high stress. Soft coal produces more plastic deformation under low loading conditions, but the development of the fracture is relatively slow in the stress-softening stage. We extracted and summarized the AE characteristics discussed in the literature using one single coal sample, and the results support the conclusions presented in this paper. This study subdivided the deformation process and AE characteristics of soft and hard coals, providing a theoretical guidance and technical support for the application of AE technology in coal with different strengths.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference38 articles.

1. Technology and Application of Acoustic Emission;Yuan,1985

2. Experimental on acoustic emission during compression rupture procedure of coal sample;Yang;J. China Coal Soc.,2006

3. Application of AE Techniques;Katsuyama,1996

4. Acoustic emission and sorptive deformation induced in coals of various rank by the sorption-desorption of gas

5. Cluster modeling of the short-range correlation of acoustically emitted scattering signals

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3