Cluster modeling of the short-range correlation of acoustically emitted scattering signals

Author:

Xue DongjieORCID,Lu Lele,Zhou Jie,Lu Lan,Liu Yintong

Abstract

AbstractAs a widely used measurement technique in rock mechanics, spatial correlation modeling of acoustic emission (AE) scattering signals is attracting increasing focus for describing mechanical behavior quantitatively. Unlike the statistical description of the spatial distribution of randomly generated AE signals, spatial correlation modeling is based mainly on short-range correlation considering the interrelationship of adjacent signals. As a new idea from percolation models, the covering strategy is used to build the most representative cube cluster, which corresponds to the critical scale at peak stress. Its modeling process of critical cube cluster depends strongly on the full connection of the main fracture network, and the corresponding cube for coverage is termed the critical cube. The criticality pertains to not only the transition of local-to-whole connection of the fracture network but also the increasing-to-decreasing transition of the deviatoric stress with an obvious stress drop in the brittle failure of granite. Determining a reasonable critical cube guarantees the best observation scale for investigating the failure process. Besides, the topological connection induces the geometric criticality of three descriptors, namely anisotropy, pore fraction, and specific surface area, which are evaluated separately and effectively. The results show that cluster modeling based on the critical cube is effective and has criticality in both topology and geometry, as well as the triaxial behavior. Furthermore, the critical cube length presents a high confidence probability of being correlated to the mineral particle size. Besides, its pore fraction of cube cluster is influenced strongly by the critical cube length and confining pressure.

Funder

National Natural Science Foundation of China

State Key Research Development Program of China

Fund of Yueqi Outstanding Scholars

Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3