Dynamic Recrystallization Simulation for X12 Alloy Steel by CA Method Based on Modified L-J Dislocation Density Model

Author:

Chen Xuewen,Zhang Jiayin,Du Yuqing,Wang Guangxin,Huang Tao

Abstract

Hot compressive behaviors of X12 alloy steel were investigated using a Gleeble-1500D thermal mechanical simulator in a temperature range from 1050 to 1250 °C and with a range of strain rates from 0.05 to 5 s−1 and a maximum true strain of 0.7. Stress–strain curves were obtained under various deformation conditions. A modified Laasraoui–Jonas (L-J) dislocation density model of X12 alloy steel was established for the given ranges of strain rate and temperature. On the basis of this dislocation density model, a cellular automaton (CA) model was constructed and used to simulate microstructure evolution during the hot compression process. Microstructure and grain size of X12 were predicted for different deformation conditions. The simulated grain size was compared with the actual grain size measured with metallographic photos. An average relative error of grain size was determined to be 6%, indicating that the modified L-J dislocation density model can accurately predict dynamic recrystallization behaviors of X12 alloy steel in hot forging processes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3