Artificial Neural Network-Based Critical Conditions for the Dynamic Recrystallization of Medium Carbon Steel and Application

Author:

Tize Mha Pierre1ORCID,Dhondapure Prashant2ORCID,Jahazi Mohammad2ORCID,Tongne Amèvi1ORCID,Pantalé Olivier1ORCID

Affiliation:

1. Laboratoire Génie de Production, Institut National Polytechnique/Ecole Nationale d’Ingénieurs de Tarbes, Université de Toulouse, 47 Avenue d’Azereix, F-65016 Tarbes, France

2. Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre Dame St. W., Montreal, QC H3C 1K3, Canada

Abstract

This study presents a novel and thorough approach to comprehending and simulating the DRX process while hot compressing steel. To achieve this goal, we studied the high-temperature deformation behavior of a medium-carbon steel through hot compression testing on a Gleeble-3800 thermomechanical simulator over a broad range of strains, strain rates, and temperatures. We also employed an artificial neural network (ANN) to model the thermo-visco-plastic behavior with a flow law. The precision of quantifying the DRX volume fraction is dependent on critical conditions, which are essential for both analytical model evaluation and numerical implementation in finite element software. This study proposes a second ANN, serving as a universal approximator, to fit the data required for DRX critical condition calculations, whereas the Johnson–Mehl–Avrami–Kohnogorov (JMAK) model served as an analytical tool to estimate the DRX volume fraction, which underwent validation through experimental measurements. A numerical implementation of the JMAK model was conducted in ABAQUS software and compared against experimental data by means of microstructure analysis. The comparison revealed a strong correlation between the simulation and experiment. The study investigated the impact of temperature, strain, and strain rate on DRX evolution. The findings showed that DRX increases with rising temperature and strain but decreases with increasing strain rate.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3