Distortion of Thin-Walled Structure Fabricated by Selective Laser Melting Based on Assumption of Constraining Force-Induced Distortion

Author:

Yang Tao,Xie DeqiaoORCID,Yue Wenchao,Wang Shuang,Rong Peng,Shen LidaORCID,Zhao Jianfeng,Wang ChangjiangORCID

Abstract

Metal additive manufacturing has shown great potential in aerospace, medical, and automobile industries; however, distortion of metal part has been an obstacle in widespread application of metal additive manufacturing. The mechanism of thin-walled structure distortion remains unrevealed. In this study, the origin of distortion of thin-walled structure was discussed, based on the previously proposed assumption of constraining force-induced distortion. The relation between the microstructure and macro-distortion has been linked via the constraining force. The influence of scan directions and structure sizes on the distortion was also studied, and the approaches to decrease the thin-walled structure were discussed. Use of the alternant scan strategy has been validated as an effective approach if the structure sizes cannot be adjusted.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3