Fatigue Response of Additive-Manufactured 316L Stainless Steel

Author:

Chepkoech Melody1ORCID,Omoniyi Peter1ORCID,Owolabi Gbadebo1

Affiliation:

1. Department of Mechanical Engineering, Howard University, Washington, DC 20059, USA

Abstract

This study investigated the fatigue performance of 316L stainless steel fabricated via laser powder bed fusion (LPBF). Stress-controlled fatigue tests were performed at different stress amplitudes on vertically built samples using a frequency of 15 Hz and a stress ratio of 0.1. The stress amplitudes were varied to provide the cyclic response of the materials under a range of loading conditions. The average fatigue strength was determined to be 92.94 MPa, corresponding to a maximum stress of 185.87 MPa. The microstructures were observed through scanning electron microscopy (SEM) with the aid of electron backscattered diffraction (EBSD), and the average grain size of the as-built samples was determined to be 15.6 µm, with most grains having a <110> preferred crystallographic orientation. A higher kernel average misorientation value was measured on the deformed surfaces, revealing the increased misorientation of the grains. Defects were observed on the fractured surfaces acting as crack initiators while deflecting the crack propagation paths. The fatigue failure mode for the LPBF 316L samples was ductile, as illustrated by the numerous dimples on fracture surfaces and fatigue striations.

Funder

Department of Defense, United States

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3