Vision-Based Approach in Contact Modelling between the Footpad of the Lander and the Analogue Representing Surface of Phobos

Author:

Cała MarekORCID,Kohut Piotr,Holak KrzysztofORCID,Wałach DanielORCID

Abstract

Identifying solar system surface properties of celestial bodies requires the conducting of many tests and experiments in conditions similar to those found on various objects. One of the first tasks to be solved by engineers is determining the contact condition between the lander and the surface of a given celestial body during landing in a microgravity environment. This paper presents the results of experimental studies and numerical simulations of the contact phenomenon between the lander foot model and the Phobos analogue. The main goal of the experimental tests was to obtain measured deformation data of the studied analogues using 2D and 3D vision systems, which were employed to analyze the behavior of the lander foot and the surface of the studied analogue itself and to calibrate the numerical models. The analogue representing the Phobos surface was foam concrete. The variable parameters in the study were the analogue thickness and the lander foot velocity at the time of contact. Tests were conducted for three different contact velocities of 1.2 m/s, 3.0 m/s, and 3.5 m/s. Taking into account the mass of the lander foot model, kinetic energies of 30.28 J, 189.22 J, and 257.56 J were obtained. The results showed that at low contact velocities, and thus low kinetic energies, no significant differences in behavior of the material directly under the lander foot were observed, and similar values of forces in the lander foot were obtained. For higher contact velocities, the behavior of analogues with varying thicknesses was different, resulting in different values of analogue deformation and dynamics of increments and decrements of force in the lander foot itself. Although performed on a single material, the experiments revealed different behaviors depending on its thickness at the same impact energy. This is an essential guideline for engineers who need to take this fact into account when designing the lander itself.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3