Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique

Author:

Kim ByunghyunORCID,Cho Soojin

Abstract

At present, a number of computer vision-based crack detection techniques have been developed to efficiently inspect and manage a large number of structures. However, these techniques have not replaced visual inspection, as they have been developed under near-ideal conditions and not in an on-site environment. This article proposes an automated detection technique for crack morphology on concrete surface under an on-site environment based on convolutional neural networks (CNNs). A well-known CNN, AlexNet is trained for crack detection with images scraped from the Internet. The training set is divided into five classes involving cracks, intact surfaces, two types of similar patterns of cracks, and plants. A comparative study evaluates the successfulness of the detailed surface categorization. A probability map is developed using a softmax layer value to add robustness to sliding window detection and a parametric study was carried out to determine its threshold. The applicability of the proposed method is evaluated on images taken from the field and real-time video frames taken using an unmanned aerial vehicle. The evaluation results confirm the high adoptability of the proposed method for crack inspection in an on-site environment.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. ASCE’s 2017 Infrastructure Report Card | GPA: D+ https://www.infrastructurereportcard.org/

2. Future Trend of Capital Investment for Korean Transportation Infrastructure;Park,2016

3. Structural dynamic displacement vision system using digital image processing

4. 3D displacement measurement model for health monitoring of structures using a motion capture system

5. Vision-based multipoint displacement measurement for structural health monitoring

Cited by 216 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3