Oxygen-Sensing Protein Cysteamine Dioxygenase from Mandarin Fish Involved in the Arg/N-Degron Pathway and Siniperca chuatsi Rhabdovirus Infection

Author:

Liu Wenhui1,He Jian12,Li Zhimin1,Weng Shaoping3,Guo Changjun123ORCID,He Jianguo123ORCID

Affiliation:

1. State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China

2. Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

3. Guangdong Province Key Laboratory for Aquatic Economic Animals, School of life Sciences, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Mammalia cysteamine (2-aminoethanethiol) dioxygenase (ADO) controls the stability of the regulator of G protein signaling 4 (RGS4) through the Cys branch of the Arg/N-degron pathway, thereby affecting the response of the body to hypoxia. However, the oxygen-sensing function of ADO remains unknown in teleost fish. Mandarin fish (Siniperca chuatsi) is one of the most important freshwater economic fishes in China. As the scale of the rearing density continues to increase, hypoxia has become an important factor threatening the growth of mandarin fish. Herein, the molecular characterization, the oxygen-sensing enzyme function, and the role in virus infection of ADO from mandarin fish (scADO) were explored. Bioinformation analysis results showed that scADO had all the molecular foundations for achieving thiol dioxygenase function: three histidine residues coordinated with Fe(II), PCO/ADO domain, and a “jelly roll” β-barrel structure. The expression pattern analysis showed that scAdo was highly expressed in the immune-related tissues, liver, and kidneys and responded to hypoxia on the expression level. Protein degradation experiment results revealed that scADO could lead to the degradation of RGS4 protein through the Cys branch of the Arg/N-degron pathway. Furthermore, the expression levels of scADO responded to fish virus infection. scADO could significantly promote the replication of Siniperca chuatsi rhabdovirus, and this was associated with its thiol dioxygenase activity. These findings not only demonstrate scADO as an oxygen-sensing protein in teleost fish, but are also of considerable importance for clarifying the contribution of the mechanism of hypoxia to the outbreaks of fish viruses.

Funder

National Key Research and Development Program of China

Guangdong Key Research and Development Program

China Agriculture Research System of MOF and MARA

Guangdong Basic and Applied Basic Research Foundation

Key-Area Research and Development Program of Guangdong Province

Guangdong Laboratory for Lingnan Modern Agriculture

Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams

Zhuhai basic and applied basic research project

Basic and Applied Basic Research Project of Guangzhou Science and Technology Plan Project

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3