A 3D Lidar SLAM System Based on Semantic Segmentation for Rubber-Tapping Robot

Author:

Yang Hui1ORCID,Chen Yaya1,Liu Junxiao1,Zhang Zhifu1ORCID,Zhang Xirui1

Affiliation:

1. Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China

Abstract

Simultaneous localization and mapping (SLAM) in rubber plantations is a challenging task for rubber-tapping robots. Due to the long-term stability of tree trunks in rubber plantations, a SLAM system based on semantic segmentation, called Se-LOAM, is proposed in this work. The 3D lidar point cloud datasets of trunks collected in rubber plantations of Hainan University are used to train the semantic model, and the model is used to extract features of trunk point clouds. After clustering the trunk point clouds, each single rubber tree instance is segmented based on the Viterbi algorithm. The point clouds of tree instances are fitted to the cylindrical trunk models for semantic cluster association and positional estimation, which are used for lidar odometry and mapping. The experimental results show that the present SLAM system is accurate in establishing online mapping, and the location of the trunk in the map is clearer. Specifically, the average relative pose error is 0.02 m, which is better than the positioning performance of LOAM and LeGO-LOAM. The average error of estimating the diameter at breast height (DBH) is 0.57 cm, and it only takes 401.4 kB to store a map of the area of approximately 500 m2, which is about 10% less than other classic methods. Therefore, Se-LOAM can meet the requirements of online mapping, providing a robust SLAM method for rubber-tapping robots.

Funder

Key technology research and demonstration of intelligent copying advanced rubber-tapping machine

International Scientific and Technological Cooperation R&D Project in Hainan Province

Key Research and Development Project of Hainan Province

National Modern Agricultural Industry Technology System Post Scientist Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3