A Rubber-Tapping Robot Forest Navigation and Information Collection System Based on 2D LiDAR and a Gyroscope

Author:

Zhang Chunlong,Yong LiyunORCID,Chen Ying,Zhang Shunlu,Ge LuzhenORCID,Wang Song,Li Wei

Abstract

Natural rubber is widely used in human life because of its excellent quality. At present, manual tapping is still the main way to obtain natural rubber. There is a sore need for intelligent tapping devices in the tapping industry, and the autonomous navigation technique is of great importance to make rubber-tapping devices intelligent. To realize the autonomous navigation of the intelligent rubber-tapping platform and to collect information on a rubber forest, the sparse point cloud data of tree trunks are extracted by the low-cost LiDAR and a gyroscope through the clustering method. The point cloud is fitted into circles by the Gauss–Newton method to obtain the center point of each tree. Then, these center points are threaded through the Least Squares method to obtain the straight line, which is regarded as the navigation path of the robot in this forest. Moreover, the Extended Kalman Filter (EKF) algorithm is adopted to obtain the robot’s position. In a forest with different row spacings and plant spacings, the heading error and lateral error of this robot are analyzed and a Fuzzy Controller is applied for the following activities: walking along one row with a fixed lateral distance, stopping at fixed points, turning from one row into another, and collecting information on plant spacing, row spacing, and trees’ diameters. Then, according to the collected information, each tree’s position is calculated, and the geometric feature map is constructed. In a forest with different row spacings and plant spacings, three repeated tests have been carried out at an initial speed of 0.3 m/s. The results show that the Root Mean Square (RMS) lateral errors are less than 10.32 cm, which shows that the proposed navigation method provides great path tracking. The fixed-point stopping range of the robot can meet the requirements for automatic rubber tapping of the mechanical arm, and the average stopping error is 12.08 cm. In the geometric feature map constructed by collecting information, the RMS radius errors are less than 0.66 cm, and the RMS plant spacing errors are less than 11.31 cm. These results show that the method for collecting information and constructing a map recursively in the process of navigation proposed in the paper provides a solution for forest information collection. The method provides a low-cost, real-time, and stable solution for forest navigation of automatic rubber tapping equipment, and the collected information not only assists the automatic tapping equipment to plan the tapping path, but also provides a basis for the informationization and precise management of a rubber plantation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3