Variation in Downed Deadwood Density, Biomass, and Moisture during Decomposition in a Natural Temperate Forest

Author:

Přívětivý TomášORCID,Šamonil Pavel

Abstract

Deadwood is a resource of water, nutrients, and carbon, as well as an important driving factor of spatial pedocomplexity and hillslope processes in forested landscapes. The applicability of existing relevant studies in mountain forests in Central Europe is limited by the low number of data, absence of precise dating, and short time periods studied. Here, we aimed to assess the decomposition pathway in terms of changes and variability in the physical characteristics of deadwood (wood density, biomass, and moisture) during the decomposition process, and to describe differences in decomposition rate. The research was carried out in the Žofínský Primeval Forest, one of the oldest forest reserves in Europe. Samples were taken from sapwood of downed logs of the three main tree species: Fagus sylvatica L., Abies alba Mill., and Picea abies (L.) Karst. The time since the death of each downed log was obtained using tree censuses repeated since 1975 and dendrochronology. The maximal time since the death of a log was species-specific, and ranged from 61–76 years. The rate of change (slope) of moisture content along the time since death in a linear regression model was the highest for F. sylvatica (b = 3.94) compared to A. alba (b = 2.21) and P. abies (b = 1.93). An exponential model showing the dependence of biomass loss on time since death revealed that F. sylvatica stems with a diameter of 50–90 cm had the shortest decomposition rate—51 years—followed by P. abies (71 years) and A. alba (72 years). Our findings can be used in geochemical models of element cycles in temperate old-growth forests, the prediction of deadwood dynamics and changes in related biodiversity, and in refining management recommendations.

Funder

Grantová Agentura České Republiky

Interní grantová agentura Mendelovy univerzity v Brně

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3