Examining the Limits of Predictability of Human Mobility

Author:

Kulkarni VaibhavORCID,Mahalunkar AbhijitORCID,Garbinato BenoitORCID,Kelleher JohnORCID

Abstract

We challenge the upper bound of human-mobility predictability that is widely used to corroborate the accuracy of mobility prediction models. We observe that extensions of recurrent-neural network architectures achieve significantly higher prediction accuracy, surpassing this upper bound. Given this discrepancy, the central objective of our work is to show that the methodology behind the estimation of the predictability upper bound is erroneous and identify the reasons behind this discrepancy. In order to explain this anomaly, we shed light on several underlying assumptions that have contributed to this bias. In particular, we highlight the consequences of the assumed Markovian nature of human-mobility on deriving this upper bound on maximum mobility predictability. By using several statistical tests on three real-world mobility datasets, we show that human mobility exhibits scale-invariant long-distance dependencies, contrasting with the initial Markovian assumption. We show that this assumption of exponential decay of information in mobility trajectories, coupled with the inadequate usage of encoding techniques results in entropy inflation, consequently lowering the upper bound on predictability. We highlight that the current upper bound computation methodology based on Fano’s inequality tends to overlook the presence of long-range structural correlations inherent to mobility behaviors and we demonstrate its significance using an alternate encoding scheme. We further show the manifestation of not accounting for these dependencies by probing the mutual information decay in mobility trajectories. We expose the systematic bias that culminates into an inaccurate upper bound and further explain as to why the recurrent-neural architectures, designed to handle long-range structural correlations, surpass this upper limit on human mobility predictability.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference69 articles.

1. Critical behavior from deep dynamics: A hidden dimension in natural language;Lin;arXiv,2016

2. MobiDict

3. Global and local state context prediction;Petzold,2003

4. Understanding predictability and exploration in human mobility

5. Limits of Predictability in Human Mobility

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On an Aggregated Estimate for Human Mobility Regularities through Movement Trends and Population Density;Entropy;2024-04-30

2. Human Mobility: Prediction and Predictability;2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2024-03-11

3. Huffman Deep Compression of Edge Node Data for Reducing IoT Network Traffic;IEEE Access;2024

4. Multivariate Time-Series Forecasting Model: Predictability Analysis and Empirical Study;IEEE Transactions on Big Data;2023-12

5. Trajectory test-train overlap in next-location prediction datasets;Machine Learning;2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3