Implicit Solutions of the Electrical Impedance Tomography Inverse Problem in the Continuous Domain with Deep Neural Networks

Author:

Strauss Thilo1,Khan Taufiquar2

Affiliation:

1. Research Department at ETAS GmbH, Robert Bosch GmbH, 70469 Stuttgart, Germany

2. Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Abstract

Electrical impedance tomography (EIT) is a non-invasive imaging modality used for estimating the conductivity of an object Ω from boundary electrode measurements. In recent years, researchers achieved substantial progress in analytical and numerical methods for the EIT inverse problem. Despite the success, numerical instability is still a major hurdle due to many factors, including the discretization error of the problem. Furthermore, most algorithms with good performance are relatively time consuming and do not allow real-time applications. In our approach, the goal is to separate the unknown conductivity into two regions, namely the region of homogeneous background conductivity and the region of non-homogeneous conductivity. Therefore, we pose and solve the problem of shape reconstruction using machine learning. We propose a novel and simple jet intriguing neural network architecture capable of solving the EIT inverse problem. It addresses previous difficulties, including instability, and is easily adaptable to other ill-posed coefficient inverse problems. That is, the proposed model estimates the probability for a point of whether the conductivity belongs to the background region or to the non-homogeneous region on the continuous space Rd∩Ω with d∈{2,3}. The proposed model does not make assumptions about the forward model and allows for solving the inverse problem in real time. The proposed machine learning approach for shape reconstruction is also used to improve gradient-based methods for estimating the unknown conductivity. In this paper, we propose a piece-wise constant reconstruction method that is novel in the inverse problem setting but inspired by recent approaches from the 3D vision community. We also extend this method into a novel constrained reconstruction method. We present extensive numerical experiments to show the performance of the architecture and compare the proposed method with previous analytic algorithms, mainly the monotonicity-based shape reconstruction algorithm and iteratively regularized Gauss–Newton method.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-based bioimpedance assessment of knee osteoarthritis severity;Biomedical Physics & Engineering Express;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3