Abstract
Abstract
This study proposes a multiclass model to classify the severity of knee osteoarthritis (KOA) using bioimpedance measurements. The experimental setup considered three types of measurements using eight electrodes: global impedance with adjacent pattern, global impedance with opposite pattern, and direct impedance measurement, which were taken using an electronic device proposed by authors and based on the Analog Devices AD5933 impedance converter. The study comprised 37 participants, 25 with healthy knees and 13 with three different degrees of KOA. All participants performed 20 repetitions of each of the following five tasks: (i) sitting with the knee bent, (ii) sitting with the knee extended, (iii) sitting and performing successive extensions and flexions of the knee, (iv) standing, and (v) walking. Data from the 15 experimental setups (3 types of measurements×5 exercises) were used to train a multiclass random forest. The training and validation cycle was repeated 100 times using random undersampling. At each of the 100 cycles, 80% of the data were used for training and the rest for testing. The results showed that the proposed approach achieved average sensitivities and specificities of 100% for the four KOA severity grades in the extension, cyclic, and gait tasks. This suggests that the proposed method can serve as a screening tool to determine which individuals should undergo x-rays or magnetic resonance imaging for further evaluation of KOA.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献