Age-Related Cognitive Decline, Focus on Microbiome: A Systematic Review and Meta-Analysis

Author:

Coradduzza Donatella1ORCID,Sedda Stefania1,Cruciani Sara1ORCID,De Miglio Maria Rosaria2ORCID,Ventura Carlo3ORCID,Nivoli Alessandra2,Maioli Margherita14ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy

2. Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy

3. Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems-Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy

4. Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy

Abstract

Aging is a complex process influenced by genetics and the environment, leading to physiological decline and increased susceptibility to diseases. Cognitive decline is a prominent feature of aging, with implications for different neurodegenerative disorders. The gut microbiome has gained attention for its potential impact on health and disease, including cognitive function. This systematic review and meta-analysis aimed to investigate the relationship between the gut microbiome and cognitive function in the context of aging. Following PRISMA guidelines, a comprehensive search strategy was employed in PubMed, Scopus, and Web of Science databases. Studies exploring the role of the microbiome in cognition and neurodegenerative disorders, published between 2013 and 2023, were included. Data extraction and quality assessment were performed. Quantitative synthesis using statistical analyses was performed to examine microbial diversity and relative abundance in various cognitive conditions. Sixteen studies involving a total of 1303 participants were included in the analysis. The gut microbiota’s relative abundance was different in individuals with cognitive impairments such as Alzheimer’s disease, Parkinson’s disease, and dementia, compared to the healthy controls. The most prevalent phyla affected were Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Meta-analyses indicated substantial heterogeneity among studies focusing on Alzheimer’s disease. The overall quality of evidence related to microbial analysis was moderate. The gut microbiome’s role in cognitive decline and neurodegenerative disorders warrants investigation. Altered microbial abundance, particularly in specific phyla, is associated with cognitive impairments. However, variations in study findings and methodologies highlight the complexity of the relationship between the gut microbiome and cognitive function. Further studies are needed to better understand the mechanisms underlying this connection and its potential implications for aging and cognitive health.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3