Immunohistochemical Identification and Assessment of the Location of Immunoproteasome Subunits LMP2 and LMP7 in Acquired Cholesteatoma

Author:

Rutkowska Justyna1,Kasacka Irena2ORCID,Rogowski Marek1,Olszewska Ewa1ORCID

Affiliation:

1. Department of Otolaryngology, Medical University of Bialystok, 15-089 Białystok, Poland

2. Department of Histology and Cytophysiology, Medical University of Bialystok, 15-089 Białystok, Poland

Abstract

Cholesteatoma, accompanied by chronic inflammatory response, is characterized by invasive growth and osteolytic activity. As specific proteasome isoforms, the immunoproteasomes serve as an important modulator of inflammatory responses. The aim of the present study was to determine the biological activity of cholesteatoma through the analysis of the expression and localization of immunoproteasome subunits of low molecule weight protein (LMP) 2 and LMP7. Cholesteatoma specimens were obtained from 15 adults who underwent ear surgery due to acquired attic cholesteatoma. Normal skin specimens were taken from retro-auricular skin incisions from the same patients. The specimens were stained with anti-LMP7 antibody, using immunohistochemistry techniques based on the binding of biotinylated secondary antibody with the enzyme-labeled streptavidin and the Envision FLEX system. In all specimens of cholesteatoma, the immunohistochemical reaction with the antibody against the LMP2 was positive, in both the cytoplasm of the cholesteatoma matrix and the perimatrix. A negative reaction with anti-LMP2 was observed in the cytoplasm and nuclei of control skin cells. A positive nuclear and cytoplasmic immunohistochemical reaction with anti-LMP7 has been demonstrated in numerous cells, in both the matrix and perimatrix of cholesteatoma. We present evidence of the presence of expressions of LMP2 and LMP7 within cholesteatoma tissue. Our results might bring new information concerning immunoproteasome-dependent pathophysiologic mechanisms in cholesteatoma.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3