Synthesis and Study of Organic Nanostructures Fabricated by Inclusion of 2-Methylbenzimidazole Molecules in Nanotubes of Chrysotile Asbestos, Mesoporous Silica, and Nanopores of Borate Glasses

Author:

Balashova Elena1ORCID,Levin Aleksandr A.1ORCID,Pavlov Sergey1ORCID,Starukhin Anatoly1ORCID,Fokin Alexander1,Kurdyukov Dmitry1,Eurov Daniil1,Krichevtsov Boris1ORCID

Affiliation:

1. Ioffe Institute, Russian Academy of Sciences, Politechnicheskaya 26, 194021 Saint Petersburg, Russia

Abstract

New organic nanostructures were synthesized by introducing 2-methylbenzimidazole (MBI) molecules from a melt, gas phase, or alcoholic solution into nanosized voids of borate porous glasses (PG), nanotubes of chrysotile asbestos (ChA), and mesoporous silica (MS). The incorporation of MBI into borate glasses with different pore sizes is accompanied by the appearance of several phases formed by nanocrystallites which have a MBI crystal structure, but somewhat differ in lattice parameters. The size of some crystallites significantly exceeds the size of nanopores, which indicates the presence of long-scale correlations of the crystal structure. The size of MBI nanocrystallites in ChA was close to the diameter of nanotubes (D ~10 nm), which shows the absence of crystal structure correlations. The XRD pattern of mesoporous silica filled by MBI does not exhibit reflections caused by MBI and a presence of MBI was confirmed only by the analysis of correlation function. The incorporation of MBI molecules into matrices is observed through optical IR absorption spectroscopy (FTIR) and photoluminescence. Introducing MBI in ChA and MS is followed by the appearance of bright green photoluminescence, the spectral structure of which is analogous to MBI crystals but slightly shifted in the blue region, probably due to a quantum-size effect. The influence of MBI inclusion in PG and ChA on the permittivity, dielectric losses, conductivity, and parameters of their hopping conductivity is analyzed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference88 articles.

1. Organic and inorganic nanomaterials: Fabrication, properties and applications;Alshammari;RSC Adv.,2023

2. Thin Film Technologies for Micro/Nano Systems; A Review;Zeijl;ECS Trans.,2014

3. Nano-and Microstructures for Thin-Film Evaporation—A Review;Plawsky;Nanoscale Microscale Thermophys. Eng.,2014

4. Barhoum, A., and Makhlouf, A.A.S. (2018). Micro and Nano Technologies, Emerging Applications of Nanoparticles and Architecture Nanostructures, Elsevier.

5. Two-dimensional ferroelectric films;Bune;Nature,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3