Local and Bayesian Survival FDR Estimations to Identify Reliable Associations in Whole Genome of Bread Wheat

Author:

Sadeqi Mohammad Bahman1ORCID,Ballvora Agim1ORCID,Léon Jens1ORCID

Affiliation:

1. INRES-Plant Breeding, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany

Abstract

Estimating the FDR significance threshold in genome-wide association studies remains a major challenge in distinguishing true positive hypotheses from false positive and negative errors. Several comparative methods for multiple testing comparison have been developed to determine the significance threshold; however, these methods may be overly conservative and lead to an increase in false negative results. The local FDR approach is suitable for testing many associations simultaneously based on the empirical Bayes perspective. In the local FDR, the maximum likelihood estimator is sensitive to bias when the GWAS model contains two or more explanatory variables as genetic parameters simultaneously. The main criticism of local FDR is that it focuses only locally on the effects of single nucleotide polymorphism (SNP) in tails of distribution, whereas the signal associations are distributed across the whole genome. The advantage of the Bayesian perspective is that knowledge of prior distribution comes from other genetic parameters included in the GWAS model, such as linkage disequilibrium (LD) analysis, minor allele frequency (MAF) and call rate of significant associations. We also proposed Bayesian survival FDR to solve the multi-collinearity and large-scale problems, respectively, in grain yield (GY) vector in bread wheat with large-scale SNP information. The objective of this study was to obtain a short list of SNPs that are reliably associated with GY under low and high levels of nitrogen (N) in the population. The five top significant SNPs were compared with different Bayesian models. Based on the time to events in the Bayesian survival analysis, the differentiation between minor and major alleles within the association panel can be identified.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3