Temperature Stable Ion Exchange Resins as Catalysts for the Manufacturing of Vitamin Precursors by Aldol Reaction

Author:

Vosberg Jonas1,Bouveyron Thomas1,Eisen-Winter Simon1ORCID,Drönner Jan1,Raabe Gerhard2ORCID,Vanhoorne Pierre3,Behnke Sven3,Eisenacher Matthias1ORCID

Affiliation:

1. Circular Transformation Lab, TH Köln-University of Applied Sciences, 51379 Leverkusen, Germany

2. Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

3. Lanxess Deutschland GmbH, LPT-M-R&I, Kaiser-Wilhelm-Allee, 51369 Leverkusen, Germany

Abstract

This study explores the potential of robust, strongly basic type I ion exchange resins—specifically, Amberlyst® A26 OH and Lewatit® K 6465—as catalysts for the aldol condensation of citral and acetone, yielding pseudoionone. Emphasis is placed on their long-term stability and commendable performance in continuous operational settings. The aldol reaction, which traditionally is carried out using aqueous sodium hydroxide as the catalyst, holds the potential for enhanced sustainability and reduced waste production through the use of basic ion exchange resins in heterogeneous catalysis. Density Functional Theory (DFT) calculations are employed to investigate catalyst deactivation mechanisms. The result of these calculations indicates that the active sites of Amberlyst® A26 OH are cleaved more easily than the active sites of Lewatit® K 6465. However, the experimental data show a gradual decline in catalytic activity for both resins. Batch experiments reveal Amberlyst® A26 OH’s active sites diminishing, while Lewatit® K 6465 maintains relative consistency. This points to distinct deactivation processes for each catalyst. The constant count of basic sites in Lewatit® K 6465 during the reaction suggests additional factors due to its unique polymer structure. This intriguing observation also highlights an exceptional temperature stability for Lewatit® K 6465 compared to Amberlyst® A26 OH, effectively surmounting one of the prominent challenges associated with the utilization of ion exchange resins in catalytic applications.

Funder

Open Access-Publication fund of TH Köln

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference45 articles.

1. Anastas, P.T., and Warner, J.C. (1998). Green Chemistry: Theory and Practice, Oxford University Press.

2. Heterogeneous basic catalysis;Hattori;Chem. Rev.,2010

3. Kazachenko, A.S., Vasilieva, N.Y., Berezhnaya, Y.D., Fetisova, O.Y., Borovkova, V.S., Malyar, Y.N., Sudakova, I.G., Sychev, V.V., Issaoui, N., and Lutoshkin, M.A. (2023). Sulfation of Birch Wood Microcrystalline Cellulose with Sulfamic Acid Using Ion-Exchange Resins as Catalysts. Polymers, 15.

4. Schubert, J. (1956). Ion Exchange Technology, Academic Press.

5. Miller, W.S., Castagna, C.J., and Pieper, A.W. (2009). Understanding ion-exchange resins for water treatment systems. GE Water Process Technol., 1–13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3