Sulfation of Birch Wood Microcrystalline Cellulose with Sulfamic Acid Using Ion-Exchange Resins as Catalysts

Author:

Kazachenko Aleksandr S.123ORCID,Vasilieva Natalia Yu.12,Berezhnaya Yaroslava D.2ORCID,Fetisova Olga Yu.2ORCID,Borovkova Valentina S.12ORCID,Malyar Yuriy N.12ORCID,Sudakova Irina G.2ORCID,Sychev Valentin V.12ORCID,Issaoui Noureddine4ORCID,Lutoshkin Maxim A.23,Karacharov Anton A.2ORCID

Affiliation:

1. School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia

2. Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, bld. 24, Krasnoyarsk 660036, Russia

3. Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, st. Partizan Zheleznyak, bld. 1, Krasnoyarsk 660022, Russia

4. Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia

Abstract

Cellulose sulfates are important biologically active substances with a wide range of useful properties. The development of new methods for the production of cellulose sulfates is an urgent task. In this work, we investigated ion-exchange resins as catalysts for the sulfation of cellulose with sulfamic acid. It has been shown that water-insoluble sulfated reaction products are formed in high yield in the presence of anion exchangers, while water-soluble products are formed in the presence of cation exchangers. The most effective catalyst is Amberlite IR 120. According to gel permeation chromatography, it was shown that the samples sulfated in the presence of the catalysts KU-2-8, Purolit s390 plus, and AN-31 SO42− underwent the greatest degradation. The molecular weight destribution profiles of these samples are noticeably shifted to the left towards low-molecular-weight compounds with an increase in fractions in the regions Mw ~2.100 g/mol and ~3.500 g/mol, indicating the growth of microcrystalline cellulose depolymerization products. The introduction of a sulfate group into the cellulose molecule is confirmed using FTIR spectroscopy by the appearance of absorption bands at 1245–1252 cm−1 and 800–809 cm−1, which correspond to the vibrations of the sulfate group. According to X-ray diffraction data, amorphization of the crystalline structure of cellulose is observed during sulfation. Thermal analysis has shown that with an increase in the content of sulfate groups in cellulose derivatives, thermal stability decreases.

Funder

Krasnoyarsk Regional Fund of Science and Technology Support

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3