An Efficient Broadband Adaptive Beamformer without Presteering Delays

Author:

Zhang MingORCID,Wang Xiaojian,Zhang AnxueORCID

Abstract

Broadband adaptive beamformers have been widely used in many areas due to their ability of filtering signals in space domain as well as in frequency domain. However, the space-time array employed in broadband beamformers requires presteering delays to align the signals coming from a specific direction. Because the presteering delays are direction dependent, it is difficult to make precise delays in practice. A common way to eliminate the presteering delays is imposing constraints on the weight vector of the space-time array. However, the structure of the constraint matrix is not taken into account in the existing methods, leading to a computational complexity of O(N2) when updating the weight vector. In this paper, we describe a new kind of constraint method in time domain that preserves the block diagonal structure of the constraint matrix. Based on this structure, we design an efficient weight vector update algorithm that has a computational complexity of O(N). In addition, the proposed algorithm does not contain matrix operations (only scalar and vector operations are involved), making it easy to be implemented in chips such as FPGA. Moreover, the constraint accuracy of the proposed method is as high as the frequency constraint method when the fractional bandwidth of the signal is smaller than 10%. Numerical experiments show that our method achieves the same performance of the state-of-the-art methods while keeping a simpler algorithm structure and a lower computational cost.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3