Beamforming Optimization in Internet of Things Applications Using Robust Swarm Algorithm in Conjunction with Connectable and Collaborative Sensors

Author:

Hasan Mohammed ZakiORCID,Al-Rizzo HussainORCID

Abstract

The integration of the Internet of Things (IoT) with Wireless Sensor Networks (WSNs) typically involves multihop relaying combined with sophisticated signal processing to serve as an information provider for several applications such as smart grids, industrial, and search-and-rescue operations. These applications entail deploying many sensors in environments that are often random which motivated the study of beamforming using random geometric topologies. This paper introduces a new algorithm for the synthesis of several geometries of Collaborative Beamforming (CB) of virtual sensor antenna arrays with maximum mainlobe and minimum sidelobe levels (SLL) as well as null control using Canonical Swarm Optimization (CPSO) algorithm. The optimal beampattern is achieved by optimizing the current excitation weights for uniform and non-uniform interelement spacings based on the network connectivity of the virtual antenna arrays using a node selection scheme. As compared to conventional beamforming, convex optimization, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), the proposed CPSO achieves significant reduction in SLL, control of nulls, and increased gain in mainlobe directed towards the desired base station when the node selection technique is implemented with CB.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible Wearable Antenna for IoT-Based Plant Health Monitoring;Electronics;2024-07-26

2. Evolutionary Multi-objective Optimization Non-dominant Individual Selection Strategy Based on Internet of Things;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10

3. Novel Sparse Linear Array Based on a New Suboptimal Number Sequence with a Hole-free Difference Co-array;Progress In Electromagnetics Research Letters;2024

4. Power Control for Collaborative Sensors in Internet of Things Environments Using K-means Approach;Lecture Notes in Networks and Systems;2024

5. Digital twin connection model based on virtual sensor;The International Journal of Advanced Manufacturing Technology;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3