A Self-Calibrating Probabilistic Framework for 3D Environment Perception Using Monocular Vision

Author:

Itu RazvanORCID,Danescu Radu GabrielORCID

Abstract

Cameras are sensors that are available anywhere and to everyone, and can be placed easily inside vehicles. While stereovision setups of two or more synchronized cameras have the advantage of directly extracting 3D information, a single camera can be easily set up behind the windshield (like a dashcam), or above the dashboard, usually as an internal camera of a mobile phone placed there for navigation assistance. This paper presents a framework for extracting and tracking obstacle 3D data from the surrounding environment of a vehicle in traffic, using as a sensor a generic camera. The system combines the strength of Convolutional Neural Network (CNN)-based segmentation with a generic probabilistic model of the environment, the dynamic occupancy grid. The main contributions presented in this paper are the following: A method for generating the probabilistic measurement model from monocular images, based on CNN segmentation, which takes into account the particularities, uncertainties, and limitations of monocular vision; a method for automatic calibration of the extrinsic and intrinsic parameters of the camera, without the need of user assistance; the integration of automatic calibration and measurement model generation into a scene tracking system that is able to work with any camera to perceive the obstacles in real traffic. The presented system can be easily fitted to any vehicle, working standalone or together with other sensors, to enhance the environment perception capabilities and improve the traffic safety.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3