Part-Based Obstacle Detection Using a Multiple Output Neural Network

Author:

Itu RazvanORCID,Danescu RaduORCID

Abstract

Detecting the objects surrounding a moving vehicle is essential for autonomous driving and for any kind of advanced driving assistance system; such a system can also be used for analyzing the surrounding traffic as the vehicle moves. The most popular techniques for object detection are based on image processing; in recent years, they have become increasingly focused on artificial intelligence. Systems using monocular vision are increasingly popular for driving assistance, as they do not require complex calibration and setup. The lack of three-dimensional data is compensated for by the efficient and accurate classification of the input image pixels. The detected objects are usually identified as cuboids in the 3D space, or as rectangles in the image space. Recently, instance segmentation techniques have been developed that are able to identify the freeform set of pixels that form an individual object, using complex convolutional neural networks (CNNs). This paper presents an alternative to these instance segmentation networks, combining much simpler semantic segmentation networks with light, geometrical post-processing techniques, to achieve instance segmentation results. The semantic segmentation network produces four semantic labels that identify the quarters of the individual objects: top left, top right, bottom left, and bottom right. These pixels are grouped into connected regions, based on their proximity and their position with respect to the whole object. Each quarter is used to generate a complete object hypothesis, which is then scored according to object pixel fitness. The individual homogeneous regions extracted from the labeled pixels are then assigned to the best-fitted rectangles, leading to complete and freeform identification of the pixels of individual objects. The accuracy is similar to instance segmentation-based methods but with reduced complexity in terms of trainable parameters, which leads to a reduced demand for computational resources.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Deep residual learning for image recognition;He;Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016

2. Fully convolutional networks for building and road extraction: Preliminary results;Zhong;Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2016

3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

4. U-Net: Convolutional Networks for Biomedical Image Segmentation;Ronneberger;Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention,2015

5. You only look once: Unified, real-time object detection;Redmon;Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3