Effect of Step Size on the Formability of Al/Cu Bimetallic Sheets in Single Point Incremental Sheet Forming

Author:

Żaba KrzysztofORCID,Puchlerska Sandra,Kuczek Łukasz,Trzepieciński TomaszORCID,Maj Piotr

Abstract

Single Point Incremental Forming (SPIF) is an unconventional forming process that is suitable for prototype production and small lot production due to the economical tooling cost, short lead time, and the ability to create symmetrical and asymmetrical complex geometries without the use of expensive dies. This article presents the effect of the step size Δz of a forming tool made of 145Cr6 tool steel on the formability and maximum forming angle, mechanical properties, hardness, surface roughness, microstructure and texture of bimetallic Al/Cu sheets. Experiments were conducted at a constant rotational speed and feed rate, with the use of rapeseed oil as a lubricant. The tests were carried out with the use of a forming tool on both sides of the bimetallic sheet. The shape and dimensions of the formed elements are determined by non-contact optical 3D scanning. It has been proved that an increase in the step size Δz affects the deterioration of the surface quality of the specimens (an increase in the Ra parameter from 0.2 μm to approximately 3 μm for the step size of 1.2 mm), while a small step size down Δz favours the geometric stability of the samples. With increasing step size (at Δx = Δy = const.), the drawpiece wall continually thinned until the material fractured. Based on the results, it was shown that increasing the step size Δz over 1.1 mm causes cracking of the drawpieces. Furthermore, greater thinning of the Al/Cu sheet was observed in the range of step size Δz between 0.7 and 1.0 mm for aluminum side and step size Δz ≤ 0.6 mm and Δz ≥ 1.1 mm for copper side. It was also found that the mechanical properties of the bimetal sheet decreased as a result of incremental forming. The greatest decrease in strength and ductility was recorded for a pitch of 1.2 mm. Strength decreased from 230 MPa (for sheet in initial state) to approximately 80 MPa, elongation from 12% to approximately 8.5%, and hardness from 120 HV10 for Cu and 60 HV10 for Al to approximately 30 HV10 for both layers.

Publisher

MDPI AG

Subject

General Materials Science

Reference50 articles.

1. Effect of process parameters on formability in incremental forming of sheet metal;Kim;J. Mater. Process. Technol.,2002

2. Leszak, E. (1967). Apparatus and Process for Incremental Dieless Forming. (US3342051A).

3. Tisza, M. (2012). General Overview of Sheet Incremental Forming, Department of Mechanical Technology, University of Miskolc.

4. Shankar, R., Jadhav, S., Goebel, R., Homberg, W., and Kleiner, M. (2005, January 9–13). Incremental sheet metal forming of performed sheets. Proceedings of the 8th International Conference on Thechnology of Plasticity 2005, Verona, Italy.

5. Asymmetric Single Point Incremental Forming of Sheet Metal;Jeswiet;CIRP Ann.—Manuf. Technol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3