A Meta-Analysis of Remote Sensing Technologies and Methodologies for Crop Characterization

Author:

Bahrami HazhirORCID,McNairn HeatherORCID,Mahdianpari MasoudORCID,Homayouni SaeidORCID

Abstract

Climate change and population growth risk the world’s food supply. Annual crop yield production is one of the most crucial components of the global food supply. Moreover, the COVID-19 pandemic has stressed global food security, production, and supply chains. Using biomass estimation as a reliable yield indicator, space-based monitoring of crops can assist in mitigating these stresses by providing reliable product information. Research has been conducted to estimate crop biophysical parameters by destructive and non-destructive approaches. In particular, researchers have investigated the potential of various analytical methods to determine a range of crop parameters using remote sensing data and methods. To this end, they have investigated diverse sources of Earth observations, including radar and optical images with various spatial, spectral, and temporal resolutions. This paper reviews and analyzes publications from the past 30 years to identify trends in crop monitoring research using remote sensing data and tools. This analysis is accomplished through a systematic review of 277 papers and documents the methods, challenges, and opportunities frequently cited in the scientific literature. The results revealed that research in this field had increased dramatically over this study period. In addition, the analyses confirmed that the normalized difference vegetation index (NDVI) had been the most studied vegetation index to estimate crop parameters. Moreover, this analysis showed that wheat and corn were the most studied crops, globally.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3