Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data

Author:

Tao Huilin,Feng Haikuan,Xu Liangji,Miao Mengke,Long Huiling,Yue Jibo,Li ZhenhaiORCID,Yang Guijun,Yang Xiaodong,Fan Lingling

Abstract

Above-ground biomass (AGB) and the leaf area index (LAI) are important indicators for the assessment of crop growth, and are therefore important for agricultural management. Although improvements have been made in the monitoring of crop growth parameters using ground- and satellite-based sensors, the application of these technologies is limited by imaging difficulties, complex data processing, and low spatial resolution. Therefore, this study evaluated the use of hyperspectral indices, red-edge parameters, and their combination to estimate and map the distributions of AGB and LAI for various growth stages of winter wheat. A hyperspectral sensor mounted on an unmanned aerial vehicle was used to obtain vegetation indices and red-edge parameters, and stepwise regression (SWR) and partial least squares regression (PLSR) methods were used to accurately estimate the AGB and LAI based on these vegetation indices, red-edge parameters, and their combination. The results show that: (i) most of the studied vegetation indices and red-edge parameters are significantly highly correlated with AGB and LAI; (ii) overall, the correlations between vegetation indices and AGB and LAI, respectively, are stronger than those between red-edge parameters and AGB and LAI, respectively; (iii) Compared with the estimations using only vegetation indices or red-edge parameters, the estimation of AGB and LAI using a combination of vegetation indices and red-edge parameters is more accurate; and (iv) The estimations of AGB and LAI obtained using the PLSR method are superior to those obtained using the SWR method. Therefore, combining vegetation indices with red-edge parameters and using the PLSR method can improve the estimation of AGB and LAI.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3