Prediction of Future Spatial and Temporal Evolution Trends of Reference Evapotranspiration in the Yellow River Basin, China

Author:

Jian Shengqi,Wang Aoxue,Su Chengguo,Wang Kun

Abstract

Reference evapotranspiration (ET0) is an integral part of the regional hydrological cycle and energy balance and is extremely sensitive to climate change. Based on temperature data from 24 global climate models (GCMs) in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this study developed a multi-model ensemble based on delta statistical downscaling with multiple interpolation methods and evaluation indicators to predict the spatial and temporal evolution trends of ET0 in the Yellow River Basin (YRB) under four emission scenarios (SSP126, SSP245, SSP370, and SSP585) for the near- (2022–2040), mid- (2041–2060), and long- (2081–2100) term future. Results demonstrate that regional data generated based on delta statistical downscaling had good simulation performance for the monthly mean, maximum, and minimum temperatures in the YRB, and the developed multi-model ensemble had better simulation capability than any single model. Compared to the historical period (1901–2014), the annual ET0 showed a highly significant increase for different future emission scenarios, and the increase is faster with increasing radiative forcing. The first main cycle of ET0 change was 52, 53, 60, and 48 years for the SSP126, SSP245, SSP370, and SSP585, respectively. ET0 in the YRB had positive values for EOF1 under all four emission scenarios, responding to a spatially consistent trend across the region. Compared to the historical period, the spatial distribution of ET0 under different future emission scenarios was characterized by being larger in the west and smaller in the east. As the radiative forcing scenario increased and time extended, ET0 significantly increased, with a maximum variation of 112.91% occurring in the western part of the YRB in the long-term future under the SSP585 scenario. This study can provide insight into the water cycle patterns of watersheds and scientific decision support for relevant departments to address the challenges of climate change.

Funder

Training Program for Young Backbone Teachers in Colleges and Universities of Henan Province

Henan Natural Science Foundation

Henan Youth Talent Promotion Project

China Postdoctoral Science Foundation

Key Science and Technology Project of Henan Province

First-class Project Special Funding of Yellow River Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3