Superpixel-Based Temporally Aligned Representation for Video-Based Person Re-Identification

Author:

Gao ChangxinORCID,Wang Jin,Liu Leyuan,Yu Jin-Gang,Sang Nong

Abstract

Most existing person re-identification methods focus on matching still person images across non-overlapping camera views. Despite their excellent performance in some circumstances, these methods still suffer from occlusion and the changes of pose, viewpoint or lighting. Video-based re-id is a natural way to overcome these problems, by exploiting space–time information from videos. One of the most challenging problems in video-based person re-identification is temporal alignment, in addition to spatial alignment. To address the problem, we propose an effective superpixel-based temporally aligned representation for video-based person re-identification, which represents a video sequence only using one walking cycle. Particularly, we first build a candidate set of walking cycles by extracting motion information at superpixel level, which is more robust than that at the pixel level. Then, from the candidate set, we propose an effective criterion to select the walking cycle most matching the intrinsic periodicity property of walking persons. Finally, we propose a temporally aligned pooling scheme to describe the video data in the selected walking cycle. In addition, to characterize the individual still images in the cycle, we propose a superpixel-based representation to improve spatial alignment. Extensive experimental results on three public datasets demonstrate the effectiveness of the proposed method compared with the state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3