Pedestrian Origin–Destination Estimation Based on Multi-Camera Person Re-Identification

Author:

Li Yan,Sarvi Majid,Khoshelham KouroshORCID,Zhang Yuyang,Jiang Yazhen

Abstract

Pedestrian origin–destination (O–D) estimates that record traffic flows between origins and destinations, are essential for the management of pedestrian facilities including pedestrian flow simulation in the planning phase and crowd control in the operation phase. However, current O–D data collection techniques such as surveys, mobile sensing using GPS, Wi-Fi, and Bluetooth, and smart card data have the disadvantage that they are either time consuming and costly, or cannot provide complete O–D information for pedestrian facilities without entrances and exits or pedestrian flow inside the facilities. Due to the full coverage of CCTV cameras and the huge potential of image processing techniques, we address the challenges of pedestrian O–D estimation and propose an image-based O–D estimation framework. By identifying the same person in disjoint camera views, the O–D trajectory of each identity can be accurately generated. Then, state-of-the-art deep neural networks (DNNs) for person re-ID at different congestion levels were compared and improved. Finally, an O–D matrix based on trajectories was generated and the resident time was calculated, which provides recommendations for pedestrian facility improvement. The factors that affect the accuracy of the framework are discussed in this paper, which we believe could provide new insights and stimulate further research into the application of the Internet of cameras to intelligent transport infrastructure management.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Simulating pedestrian flow through narrow exits

2. Estimation of Pedestrian Origin-Destination Demand in Train Stations

3. Socially-Aware Large-Scale Crowd Forecasting;Alahi;Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014

4. Pedestrian origin-destination estimation in emergency scenarios;Li;Proceedings of the 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE),2019

5. PFS method for pedestrian origin-destination surveys of enclosed areas

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3