Morpho-Physiological Assessment of Tomato and Bell Pepper in Response to Nutrient Restriction

Author:

Lisboa Lucas Aparecido Manzani1,Galindo Fernando Shintate1ORCID,Pagliari Paulo Humberto2ORCID,Goncalves João Igor Ussifati Pessoa1,Okazuka Matheus Haruichi1,Cunha Matheus Luís Oliveira1,de Figueiredo Paulo Alexandre Monteiro1

Affiliation:

1. College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil

2. Southwest Research and Outreach Center, University of Minnesota, Lamberton, MN 56152, USA

Abstract

The aim of this study was to investigate the morpho-physiological responses of tomato and bell pepper plants when specific nutrients were restricted. The study was conducted in a greenhouse under controlled environmental conditions and used hydroponic solution as the growth medium, with the nutrient solution being replaced as needed. Treatments consisted of a control treatment that included all nutrients at optimal concentrations and the suppression of magnesium (Mg), boron (B), zinc (Zn), and iron (Fe) for both tomato and bell pepper. The experimental design followed a completely randomized design, with a 2 (crops) × 5 (treatments) factorial scheme replicated four times. The results of this study showed that suppression of Fe had the most pronounced negative effect on the morphology and physiology of tomatoes and bell peppers and caused a reduction in parameters associated with gas exchange, leading to the development of interveinal chlorosis in the leaves. The suppression of Mg had the second most notable negative effects, with similar deficiency symptoms observed in the plant leaves as observed for the absence of Fe. While the suppression of B and Zn were less prominent compared to Fe and Mg, they still resulted in tissue malformation in the shoot apices and reductions in gas exchange and negatively impacted the morphological parameters evaluated. Therefore, our study provided important insights on how Mg, B, Zn, and Fe depletion affects tomato and bell pepper physiology and its impacts on tomato and bell pepper morphology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3