Greenhouse Gas Conversion into Hydrocarbons and Oxygenates Using Low Temperature Barrier Discharge Plasma Combined with Zeolite Catalysts

Author:

Golubev Oleg V.1ORCID,Tsaplin Dmitry E.1,Maximov Anton L.1ORCID

Affiliation:

1. A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (TIPS RAS), Moscow 119991, Russia

Abstract

Global warming occurs as a result of the build-up of greenhouse gases in the atmosphere, causing an increase in Earth’s average temperature. Two major greenhouse gases (CH4 and CO2) can be simultaneously converted into value-added chemicals and fuels thereby decreasing their negative impact on the climate. In the present work, we used a plasma-catalytic approach for the conversion of methane and carbon dioxide into syngas, hydrocarbons, and oxygenates. For this purpose, CuCe zeolite-containing catalysts were prepared and characterized (low-temperature N2 adsorption, XRF, XRD, CO2-TPD, NH3-TPD, TPR). The process of carbon dioxide methane reforming was conducted in a dielectric barrier discharge under atmospheric pressure and at low temperature (under 120 °C). It was found that under the studied conditions, the major byproducts of CH4 reforming are CO, H2, and C2H6 with the additional formation of methanol and acetone. The application of a ZSM-12 based catalyst was beneficial as the CH4 conversion increased and the total concentration of liquid products was the highest, which is related to the acidic properties of the catalyst.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3