A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction

Author:

Hussien Aseel G. S.,Polychronopoulou Kyriaki

Abstract

The dry reforming of methane (DRM) reaction is among the most popular catalytic reactions for the production of syngas (H2/CO) with a H2:CO ratio favorable for the Fischer–Tropsch reaction; this makes the DRM reaction important from an industrial perspective, as unlimited possibilities for production of valuable products are presented by the FT process. At the same time, simultaneously tackling two major contributors to the greenhouse effect (CH4 and CO2) is an additional contribution of the DRM reaction. The main players in the DRM arena—Ni-supported catalysts—suffer from both coking and sintering, while the activation of the two reactants (CO2 and CH4) through different approaches merits further exploration, opening new pathways for innovation. In this review, different families of materials are explored and discussed, ranging from metal-supported catalysts, to layered materials, to organic frameworks. DRM catalyst design criteria—such as support basicity and surface area, bimetallic active sites and promoters, and metal–support interaction—are all discussed. To evaluate the reactivity of the surface and understand the energetics of the process, density-functional theory calculations are used as a unique tool.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference285 articles.

1. GLOBAL SURFACE TEMPERATURE CHANGE

2. Utilisation of CO2 as a chemical feedstock: opportunities and challenges

3. A review on coke management during dry reforming of methane

4. Climate Change 2014 Mitigation of Climate Change https://keneamazon.net/Documents/Publications/Virtual-Library/Impacto/157.pdf

5. Direct Capture of CO2 from Ambient Air

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3