Effects of Dietary Aged Maize with Oxidized Fish Oil on Growth Performance, Antioxidant Capacity and Intestinal Health in Weaned Piglets

Author:

Luo Bin,Chen DaiwenORCID,Tian Gang,Zheng Ping,Yu Jie,He JunORCID,Mao XiangbinORCID,Luo Yuheng,Luo Junqiu,Huang ZhiqingORCID,Yu BingORCID

Abstract

This study aimed to determine the effects of dietary aged maize with supplementation of different levels of oxidized fish oil on growth performance, nutrient digestibility, serum antioxidant activity and gut health in piglets. Forty-two piglets were arranged in 2 × 3 factorial treatments in a complete randomized block design with seven replicates per treatment and one pig per replicate for 28 d. Diets included twp types of maize (normal maize or aged maize) and three levels of oxidized fish oil (OFO) (3% non-oxidized fish oil (0% OFO), 1.5% OFO and 1.5% non-oxidized fish oil (1.5% OFO), and 3% OFO (3% OFO). Results showed that dietary aged maize did not affect growth performance, diarrhea, and the apparent total tract digestibility (ATTD) of nutrients in piglets (p > 0.05). However, aged maize increased malonaldehyde (MDA) content and decreased total antioxidant capacity (T-AOC) in serum on both 14th and 28th days (p < 0.05) compared to the normal maize groups. Meanwhile, compared with normal maize, dietary aged maize showed a slight, but not significant (p > 0.10) decrease in total superoxide dismutase (T-SOD) activity and VE content in serum on the 14th day. In addition, aged maize significantly decreased GLUT2 mRNA expression (p < 0.05) and tended to increase (p < 0.10) TNF-α and IL-6 mRNA expression in jejunal mucosa. Compared with non-oxidized fish oil, oxidized fish oil resulted in the decrease of the 14–28 d and 0–28 d ADG, as well as the ATTD of dry matter (DM), ether extract (EE), organic matter (OM) (p < 0.05), whereas the increase in diarrhea index (p < 0.05) and F/G of the whole period (p < 0.05). Oxidized fish oil decreased serum T-AOC on both the 14th and the 28th days (p < 0.05), and decreased serum T-SOD activity and VE content on the 28th day (p < 0.05), whereas increased serum MDA content on the 28th day (p < 0.05) and 14th day (p < 0.10) compared with fresh fish oil. Meanwhile, MUC2 (p < 0.05) and SGLT1 (p < 0.10) mRNA expression in jejunal mucosa were decreased compared with non-oxidized fish oil. In addition, dietary oxidized fish oil tended to decrease 14–28 d ADFI and the ATTD of CP (p < 0.10), and piglets fed oxidized fish oil significantly decreased 14–28 d ADFI, the ATTD of CP, GLUT2 and SGLT1 mRNA expressions in jejunal mucosa when piglet also fed with aged maize (p < 0.05). Collectively, these results indicated that dietary oxidized fish oil decreased growth performance and nutrients digestibility of piglets fed with aged maize. This nutrient interaction may be mediated by inhibiting intestinal nutrient transporter, inducing intestinal inflammation, and reducing antioxidant capacity.

Funder

Science and Technology Basic Work Special Project of China

the Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3