DNS Firewall Based on Machine Learning

Author:

Marques Claudio,Malta SilvestreORCID,Magalhães João

Abstract

Nowadays there are many DNS firewall solutions to prevent users accessing malicious domains. These can provide real-time protection and block illegitimate communications, contributing to the cybersecurity posture of the organizations. Most of these solutions are based on known malicious domain lists that are being constantly updated. However, in this way, it is only possible to block malicious communications for known malicious domains, leaving out many others that are malicious but have not yet been updated in the blocklists. This work provides a study to implement a DNS firewall solution based on ML and so improve the detection of malicious domain requests on the fly. For this purpose, a dataset with 34 features and 90 k records was created based on real DNS logs. The data were enriched using OSINT sources. Exploratory analysis and data preparation steps were carried out, and the final dataset submitted to different Supervised ML algorithms to accurately and quickly classify if a domain request is malicious or not. The results show that the ML algorithms were able to classify the benign and malicious domains with accuracy rates between 89% and 96%, and with a classification time between 0.01 and 3.37 s. The contributions of this study are twofold. In terms of research, a dataset was made public and the methodology can be used by other researchers. In terms of solution, the work provides the baseline to implement an in band DNS firewall.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference51 articles.

1. The Domain Name Industry Brief https://www.verisign.com/en_US/domain-names/dnib/index.xhtml

2. Vast Majority of Newly Registered Domains Are Malicious https://www.scmagazine.com/home/security-news/malware/vast-majority-of-newly-registered-domains-are-malicious

3. Passive DNS Replication https://static.enyo.de/fw/volatile/pdr-draft-11.pdf

4. EXPOSURE: Finding Malicious Domains Using Passive DNS Analysis https://sites.cs.ucsb.edu/~chris/research/docndss11_exposure.pdf

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3