Enhancing Firewall Packet Classification through Artificial Neural Networks and Synthetic Minority Over-Sampling Technique: An Innovative Approach with Evaluative Comparison

Author:

Korkmaz Adem1ORCID,Bulut Selma2ORCID,Talan Tarık3ORCID,Kosunalp Selahattin1,Iliev Teodor4ORCID

Affiliation:

1. Department of Computer Technologies, Gönen Vocational School, Bandırma Onyedi Eylül University, Bandırma 10200, Türkiye

2. Department of Computer Technologies, Vocational School of Technical Sciences, Kırklareli University, Kırklareli 39100, Türkiye

3. Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep 27000, Türkiye

4. Department of Telecommunications, University of Ruse, 7017 Ruse, Bulgaria

Abstract

Firewall packet classification is a critical component of network security, demanding precise and reliable methods to ensure optimal functionality. This study introduces an advanced approach that combines Artificial Neural Networks (ANNs) with various data balancing techniques, including the Synthetic Minority Over-sampling Technique (SMOTE), ADASYN, and BorderlineSMOTE, to enhance the classification of firewall packets into four distinct classes: ‘allow’, ‘deny’, ‘drop’, and ‘reset-both’. Initial experiments without data balancing revealed that while the ANN model achieved perfect precision, recall, and F1-Scores for the ‘allow’, ‘deny’, and ‘drop’ classes, it struggled to accurately classify the ‘reset-both’ class. To address this, we applied SMOTE, ADASYN, and BorderlineSMOTE to mitigate class imbalance, which led to significant improvements in overall classification performance. Among the techniques, the ANN combined with BorderlineSMOTE demonstrated superior efficacy, achieving a 97% overall accuracy and consistently high performance across all classes, particularly in the accurate classification of minority classes. In contrast, while SMOTE and ADASYN also improved the model’s performance, the results with BorderlineSMOTE were notably more balanced and reliable. This study provides a comparative analysis with existing machine learning models, highlighting the effectiveness of the proposed approach in firewall packet classification. The synthesized results validate the potential of integrating ANNs with advanced data balancing techniques to enhance the robustness and reliability of network security systems. The findings underscore the importance of addressing class imbalance in machine learning models, particularly in security-critical applications, and offer valuable insights for the design and improvement of future network security infrastructures.

Funder

European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria

Publisher

MDPI AG

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3