Assimilation of Hyperspectral Infrared Atmospheric Sounder Data of FengYun-3E Satellite and Assessment of Its Impact on Analyses and Forecasts

Author:

Liu Ruixia12,Lu Qifeng12,Wu Chunqiang12ORCID,Ni Zhuoya12,Wang Fu12ORCID

Affiliation:

1. CMA Earth System Modeling and Prediction Centre (CEMC), China Meteorological Administration, Beijing 100081, China

2. State Key Laboratory of Severe Weather (LaSW), China Meteorological Administration, Beijing 100081, China

Abstract

HIRAS-II is the hyperspectral detector carried on FengYun-3E which is the world’s first meteorological satellite in dawn–dusk orbit. It fills the observation gaps during the dawn and dusk periods of polar orbit meteorological satellites, enabling a 100% global data coverage and assimilation of polar orbit satellite data within each 6 h window for numerical weather forecasting models. With 3053 vertical detection channels, it provides high-resolution vertical temperature and humidity information, thus playing an important role in improving the forecast skills of the global medium-range weather prediction models. This study assimilated data from 56 CO2 channels of FY-3E HIRAS into the CMA-GFS 4DVAR system. Two sets of experiments, FY3EHIRAS and CTRL, were designed, conducting a one-month cycle assimilation test to evaluate the impact of assimilating FY-3E HIRAS data on CMA-GFS analysis and forecasting. Using the ECMWF reanalysis data ERA5 as a reference, the study demonstrated that after assimilating data from FY-3E HIRAS’s 56 CO2 channels, there was a certain extent of improvement in the temperature field at almost all model levels. The RMSE notably reduced in the southern hemisphere’s temperature analysis field near the surface and at 500 hPa by 3.5% and 2%, respectively. The most significant improvement in the entire temperature analysis field was observed in the tropical region, followed by the southern and then the northern hemisphere. Additionally, there was a reduction in RMSE for the height and wind fields, showing considerable improvement compared to the CTRL experiment. Overall, assimilating the FY-3E HIRAS data led to positive improvements in the forecasting skills for temperature, wind fields, and height fields in both the southern and northern hemispheres. The forecasting effectiveness was slightly lower in the tropical region but displayed an overall neutral-to-positive effect.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3