Optimizing the Numerical Simulation of the Dust Event of March 2021: Integrating Aerosol Observations through Multi-Scale 3D Variational Assimilation in the WRF-Chem Model

Author:

Mei Shuang1,You Wei1ORCID,Zhong Wei2,Zang Zengliang1,Guo Jianping3,Xiang Qiangyue1

Affiliation:

1. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

2. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China

3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Abstract

The integration of high-resolution aerosol measurements into an atmospheric chemistry model can improve air quality forecasting. However, traditional data assimilation methods are challenged in effectively incorporating such detailed aerosol information. This study utilized the WRF-Chem model to conduct data assimilation and prediction experiments using the Himawari-8 satellite’s aerosol optical depth (AOD) product and ground-level particulate matter concentration (PM) measurements during a record-breaking dust event in the Beijing–Tianjin–Hebei region from 14 to 18 March 2021. Three experiments were conducted, comprising a control experiment without assimilation (CTL), a traditional three-dimensional variational (3DVAR) experiment, and a multi-scale three-dimensional variational (MS-3DVAR) experiment. The results indicated that the CTL method significantly underestimated the intensity and extent of the severe dust event, while the analysis fields and forecasting fields of PM concentration and AOD can be significantly improved in both 3DVAR and MS-3DVAR assimilation. Particularly, the MS-3DVAR assimilation approach yielded better-fitting extreme values than the 3DVAR method, mostly likely due to the multi-scale information from the observations used in the MS-3DVAR method. Compared to the CTL method, the correlation coefficient of MS-3DVAR assimilation between the assimilated PM10 analysis fields and observations increased from 0.24 to 0.93, and the positive assimilation effect persisted longer than 36 h. These findings suggest the effectiveness and prolonged influence of integrating high-resolution aerosol observations through MS-3DVAR assimilation in improving aerosol forecasting capabilities.

Funder

the Natural Science Foundation of Hunan Province-Outstanding Youth Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3